Dielectric Nonlinearity of TGS

Bernd Ploss and Beatrix Heiler

Institut für angewandte Physik der Universität (TH) Karlsruhe, Kaiserstraße 12, D-W-7500 Karlsruhe 1, Germany

Abstract

Dielectric nonlinearities in triglycine sulfate (TGS) have been measured by the analysis of harmonic components of the electric current, while a sinusoidal electric field was applied to the sample. The investigations were motivated by two aims. The first one was to develop a sensitive method for a measurement of the Landau parameters in the paraelectric phase. The second aim was to determine small bias fields and their temperature dependence. A high resolution scanning system (16 bit) has been realized, which allows the resolution of harmonics with an amplitude of 10^{-5} of the fundamental current. The nonlinearities have been measured near the Curie temperature as a function of the temperature and of an overlayed dc field. The experimental results are compared with theoretical calculations from the Landau theory with literature data. A small bias field in the order of 100 V/m has been observed in the paraelectric phase. The bias field is temperature dependent, with a temperature dependency according to a constant polarization.

Theory

For a phenomenological description of the ferroelectric properties of a material by the Landau theory, the ferroelectric contribution to the free energy F is written as a polynom of the dielectric displacement D:

$$F = F_0 + \frac{1}{2}\alpha D^2 + \frac{1}{4}\gamma D^4 + \frac{1}{6}\delta D^6 \tag{1}$$

The coefficients α , γ , δ i.e., the Landau parameters, are temperature dependent in general. A measurement of the dielectric nonlinearities i.e., of the coefficients ϵ_n of the power series representation of the function D(E):

$$D = P_s + \varepsilon_0 \varepsilon_1 E + \varepsilon_0 \varepsilon_2 E^2 + \varepsilon_0 \varepsilon_3 E^3 + \dots = P_s + \sum_{n=1}^{\infty} \varepsilon_0 \varepsilon_n E^n$$
 (2)

gives access to the Landau parameters. In the paraelectric phase i. e., for $P_{\sigma} = 0$, the first nonlinear dielectric coefficients calculated from the Landau parameters are:

$$\varepsilon_0 \varepsilon_1 = 1/\alpha$$
, $\varepsilon_0 \varepsilon_3 = -\gamma/\alpha^4$, $\varepsilon_0 \varepsilon_5 = (3\gamma^2 - \alpha\delta)/\alpha^7$ (3)

while $\varepsilon_0\varepsilon_2=\varepsilon_0\varepsilon_4=0$. The Landau parameters α and γ can be calculated from measured ε_1 and ε_3 . Especially the sign of ε_3 indicates the order of the phase transition. In principle, the measurement of ε_5 gives access to δ . A practical determination of δ is only possible, if $\alpha\delta$ is not negligible small compared with γ^3 , however.

As an effect of doping or radiation defects, a bias field E_i may occur, which shifts the D(E) curve:

$$D = P_s^0 + \varepsilon_0 \varepsilon_1^0 (E + E_i) + \varepsilon_0 \varepsilon_2^0 (E + E_i)^2 + \dots = P_s^0 + \sum_{n=1}^{\infty} \varepsilon_0 \varepsilon_n^0 (E + E_i)^n$$
 (4)

Here ε_n^0 and P_s^0 denote the nonlinear dielectric coefficients and the spontaneous polarization of the defect free material. The coefficients ε_n can be calculated as a function of E_i and ε_n^0 , if Eq. (4) is